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Abstract—Effective maritime border surveillance is crucial.
Challenges we face include irregular migration, smuggling, oil
spills and the need for rapid search and rescue. Various sensing
technologies, including AIS, SAR, optical and infrared sensors,
as well as UAV-mounted sensors, clearly enhance maritime
awareness. However, integrating their diverse outputs remains
complex. Feature-level multi-modal sensor fusion is a well-known
methodology for robust detection and behavior analysis. However,
most research relies on simulations or isolated sensors, which
limits practical insights.

This study presents a controlled real-world experiment com-
bining synchronized data from coastal ground sensors and UAV-
mounted visual and infrared sensors. The recorded dataset en-
ables the evaluation of feature-level fusion in authentic conditions.
We enhance existing fusion frameworks with additional modules
and assess them using operational metrics. This study contributes
to our understanding of the efficacy of multi-modal fusion
in complex maritime environments, while also highlighting the
significant challenges involved in transitioning from simulations
to controlled real-world sensor data.

Index Terms—Maritime Surveillance, Sensor Data Fusion,
Situational Awareness, Fusion Applications, Real-World dataset

I. INTRODUCTION

In recent years, maritime border surveillance has gained
significant geopolitical relevance, driven by growing concerns
about irregular immigration, smuggling activities, environmen-
tal incidents such as oil spills, and the ongoing requirement
for efficient search and rescue operations. Given that maritime
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zones are vast, dynamic and often hostile environments, both
on the surface and underwater, ensuring persistent and effec-
tive surveillance remains a major challenge. A detailed review
of the challenges and future directions in maritime security is
reported in [1].

A wide range of sensing technologies has been devel-
oped and successfully implemented in this domain [2]. These
include traditional coastal and ship-based systems such as
Automatic Identification Systems (AIS), Synthetic Aperture
Radar (SAR) [3]–[5], electro optical (EO) sensors [6], and
infrared (IR) sensors in both the short-wave and long-wave
spectrum. In addition, satellite systems [7] offer high-altitude
perspectives for large-area monitoring and allow change de-
tection over time. Meanwhile, unmanned aerial vehicle (UAV)
platforms are being used more and more for specific missions.

However, this technological diversity presents its own chal-
lenges. These heterogeneous data sources operate under dif-
ferent environmental conditions and generate vast amounts of
information that are often difficult to interpret in isolation. As
a result, multi-modal sensor fusion has emerged as a necessary
paradigm for combining complementary data streams and



enhancing the detection of maritime entities [8], [9] (e.g.,
ships, small vessels, and individuals) in complex operational
settings, as well as supporting behavior analysis. The scientific
community has made notable advances in fusion methodolo-
gies [10]–[14] particularly at feature level - demonstrating
that generalized approaches of multi-modal data fusion can
significantly improve overall surveillance performance.

Despite these advances, a significant limitation persists:
many fusion strategies are evaluated on simulated data [8], [9]
or address the challenges at sensor level [11] (e.g.; pixel level
fusion) [15]. Although such studies are an essential step in
the development process, they often fail to capture the com-
plexities and uncertainties of real-world sensor interactions.
Suitable, synchronized, multi-sensor datasets for feature-level
fusion are scarce, often due to the classified nature of the data.
This limits reproducibility and comparability in this critical
area of research.

In this paper, we present an evaluation study explicitly
designed to address this gap. We describe a real-world exper-
iment in which we recorded and analyzed synchronized data
from coastal ground sensors and UAV-mounted sensors for
feature-level fusion in maritime border surveillance scenarios.
Building upon the fusion modules presented in [14], we
evaluate their performance, adaptability, and real-world rel-
evance across a set of operational metrics. However, our main
contribution lies in presenting key findings on the transition
from simulations to controlled real-world sensor data.

The structure of this paper is as follows: Section II describes
the experimental setup and data acquisition methodology. Sec-
tion III elaborates on the fusion architecture, and the evaluation
metrics used in this study. Section IV presents the experimental
results, while Section V reflects on the operational implications
and key findings as well as the future work. Finally, Section VI
concludes the paper by summarizing the main contributions.

II. EXPERIMENTAL SETUP

A. Sensors

The following is a list of sensor platforms used to generate
geolocated detections:

Coastal Ground Sensors: The coastal ground sensor sys-
tem comprises two infrared cameras mounted on poles about
six meters high. The short wave infrared (SWIR) camera [16]
is equipped with fixed optics that provide a 15◦ field of view
(FOV) for detecting small vessels up to 800 meters away and
people up to 200 meters away. The long wave infrared (LWIR)
camera [17] is equipped with configurable optics that allow the
user to adjust the zoom for an optimal field of view based on
operational requirements.

UAV-EO: The aerial platform uses an advanced octocopter
to provide real-time target detection. It is equipped with
an RGB camera and an onboard NVIDIA Jetson Orin 64,
which runs the detection model. The primary sensor is an
electro-optical camera that operates in the visible spectrum
(approximately 400–700 nm) and has a 30x optical zoom. This
provides stable imagery during flight. Its optical parameters
include a 4K sensor resolution (3840 x 2160), a 1/1.32-inch

CMOS sensor, a native frame rate of 30 fps, a focal length
range of 6.72–201.6 mm, a field of view ranging from 63.7°
(wide) to 2.3° (telephoto), and an aperture range of f/1.6–f/4.7.

UAV-IR: This platform uses a DJI Mavic 3T Enterprise [18]
equipped with a custom Android application to stream real-
time telemetry and thermal video data to a ground server. The
UAV’s thermal camera has a diagonal field of view (DFOV) of
61◦, operating within the infrared wavelength range of 8–14
µm. Thermal video is recorded at a resolution of 640×512
pixels at 30 frames per second.

GNSS Trackers: For the collection of the ground truth (i.e
timestamped locations of vessels and persons) GNSS trackers
by [19] (eTrex® SE) and Septentrio [20] were used. Each
tracker records GNSS locations in WGS84 coordinates, along
with a timestamp for each second. The Garmin trackers served
as the primary devices, while the Septentrio trackers were used
as backup devices in case of incomplete data.

B. Scenario descriptions

ix scenarios were selected from a live demonstration that
was recorded over two days. These scenarios depict interac-
tions between people, vessels, and vehicles. Visual represen-
tations of each scenario are provided. Fig. 1.

Scenarios 1-3 : This scenario features three small vessels
(A, B, and C), one medium vessel, one large vessel, and
multiple people (see Fig. 1a).

The scenario begins with small vessels A and B heading
toward the shore (1). Vessel B is carrying a group of people,
while vessel A leads the way. When both vessels are approx-
imately 20 meters from the shore, vessel A turns around and
departs (2), leaving vessel B to continue alone (3).

At approximately 10 meters from the shore, four individuals
disembark from vessel B and wade through the water to the
beach. Two of them continue running inland (4), while the
other two remain on the beach (5). After the first pair reaches
the inland area, the remaining two follow and meet a separate
group of people (not the first pair) waiting there (6). After the
people disembark, vessel B turns and moves away from the
shore in a different direction from its initial path (7). Small
vessel C, also carrying people, then approaches and meets with
vessel B (8).

Meanwhile, the medium and large vessels, previously sta-
tionary in the outer waters, begin moving. The medium vessel
travels parallel to the shore (9), while the large vessel moves
toward it, also parallel to the shoreline (10). Small vessel C
then leaves small vessel B, heading rapidly toward the medium
vessel (11).

Scenarios 4-6: These extend the sequence from scenario
3: beginning when small vessel C starts heading toward the
medium vessel (see Fig. 1b) until it reaches the medium vessel
(1). Small vessel C reaches the medium vessel before the large
vessel, and small vessel C’s passengers board the medium
vessel (2). Shortly after, the large vessel enters the scene and
positions itself near the medium vessel as the scenario ends
(3).



(a) Scenarios 1-3

(b) Scenarios 4-6

Fig. 1: Visual representations of each scenario in the experi-
ments.

C. Sensor execution

This section describes the movement patterns of the sensor
platforms for each scenario (as described in section II-B. The
ground sensor platforms are limited to orientation changes,
whereas both UAV platforms have full movement within the
operational area.

Scenarios 1-3: GNSS trackers were placed on small vessel
A, small vessel B, small vessel C, the medium vessel, and
one person on board small vessel B who later disembarked
and moved inland on foot. The SWIR and LWIR cameras
followed small vessel B until it met small vessel C, then
shifted focus to small vessel C, and finally to the medium
vessel. The UAV-EO focused on small vessel B the entire time.
The UAV-IR initially followed small vessel B, then tracked
the disembarking individuals as they moved toward the shore.
When the first pair ran inland, the UAV-IR followed them until
they reached their destination. The UAV-IR then returned to
capture and track the second pair running inland, until they met
with the separate group of people. Afterwards, the UAV-RR
left the inland area, moved back toward the sea, and focused
on small vessel C.

Scenarios 4-6: GNSS trackers were deployed on the small
vessel A, small vessel B, small vessel C, and large vessel.
Sensor movements were the same as in Scenario 3 up to the
point where small vessel C approached the medium vessel.
From that moment onward, all sensors shifted their focus to
the medium vessel and followed its movement until the end
of the scenario.

D. Collected Evaluation Data

Each scenario, each deployed sensor platform captured
the scenario play-out from a different angle and produced
detections based on its field of view. The number of detections
produced by each platform for each scenario is shown in
Table I. Additionally, the GNSS trackers recorded ground truth
data for each scenario. Table I also includes the number of
data points recorded by the GNSS trackers.

TABLE I: Evaluation data

Scenario #Detections #GNSS Time
SWIR LWIR UAV-EO UAV-IR

1 35172 18303 1052 242 2248 12:41
2 32565 17345 514 127 2900 15:41
3 17118 14543 66 85 1241 7:43
4 19023 14811 97 86 937 6:33
5 19315 13397 129 105 1132 8:43
6 16322 18580 104 110 1075 8:16

III. METHODOLOGY

In this study we select a representative architecture which
is described in [14]. We reiterate on the Hierarchical Fusion
Graph (HFG) and explain how we apply and evaluate this
architecture to the maritime domain in a controlled real-world
environment. To improve readability and completeness we
summarize the concept of a HFG and present the nodes that
where used in this experimental setup.

A. Fusion architecture

The methodology described in [14] introduces the Hierar-
chical Fusion Graph (HFG), which is designed to model and
construct multi-modal sensor data fusion systems. A fusion
graph G is formulated as a directed acyclic graph (DAG),
in which nodes and edges represent the data flow (edges)
and processing models (nodes) of a fusion system. The graph
comprises three distinct types of nodes: namely, sensor nodes
S, fusion nodes F , and decision nodes D. The relation
between different nodes follow specific rules. For example all
sensor nodes si ∈ S serve as the sources of data and have no
incoming edges. Fusion nodes fi ∈ F aggregate information
from one or more predecessors whereas both the sensor and
fusion nodes possess at least one successor. Subsequently,
decision nodes di ∈ D serve to finalize the data processing.
These nodes are considered terminal, implying that they must
be preceded by at least one other node and do not output
to any subsequent nodes. For a more detailed description we
refer to [14]. In this study we focus on the application of this
methodology in our experiment.

1) Sensor Nodes: The sensor information is modeled us-
ing Probabilistic Occupancy Maps (POM), which incorporate
sensor observations via a grid containing the likelihood of an
event occurring at a specific region of the map. The parameters
of a POM are defined by the tuple:

(τi, pi) ∀si ∈ S



Fig. 2: Illustration of geo-located sensor observations of ships.
UAV EO/IR - orange cirlces. Cameras SWIR/LWIR - Dark
Blue cones

The parameter pi denotes the sensor prior imposed on obser-
vations, whereas the parameter τi models the temporal decay
of information in the map. In the present experiment, the
following detection algorithms were utilized as inputs for the
sensor nodes:

Coastal Ground Sensor Model: A YOLOX [21] object
detection algorithm was employed for detection on both
coastal ground sensors. The direction of the bounding boxes
of the detected persons and small vessels was estimated
using the extrinsic camera parameters for the purpose of geo-
localization. The geo-location of the model, as determined by
the sensor observations, is represented by a cone (see Fig. 2-
dark blue) with a maximum range of 800 meters. The opening
angle was estimated from the width of the bounding box. The
confidence of the sensor observation was estimated based on
the softmax score..

UAV-EO Model: The detection algorithm utilizes a Single
Shot Multibox Detector [22] (SSD) model with MobileNetV2
[23] backbone for real-time detection of people, vehicles and
vessels. Per-object confidence is produced by the SSD classi-
fier head as class probabilities after non-maximum suppression
at a threshold of 0.5. The system excludes detections estimated
to be more than 1 km from the platform based on monocular
geo-projection using UAV GNSS/IMU pose, altitude, camera
intrinsic, and gimbal angles resulting in circular geometries
modelling the observation‘s geo-location (see Fig. 2).

UAV-IR Model: A retrained YOLOv11 [24] model detects
objects (person, vessel, and vehicle) from the thermal video
feed, and their geo-locations are estimated by using a geomet-
ric algorithm based on UAV telemetry and camera parameters.
The platform outputs detection results where each detection
includes the object class, confidence score, and estimated
geo-location based on the intrinsic GNSS/IMU pose, altitude,
camera intrinsic, and gimbal angles (see Fig. 2).

2) Fusion Nodes: In the context of the fusion nodes,
the Bayesian fusion model is employed, as outlined in

[14]. Furthermore, we introduce two new nodes. Let M =
{M1,M2, . . . Mn} be a set of POMs. A cell mij of Mk

with probability p of being occupied at time t is represented
in log-odds form by lkt (mij) = log p

1−p . Then we define a
Bayesian fusion by

B1:K
t (mij) =

K∑
k=1

lkt (mij), (1)

the LogicalAND fusion by:

∧1:K
t (mij) = min{lkt (mij) : k ∈ 1..n}, (2)

and consequently the LogicalOR (not used in this study) by

∨1:K
t (mij) = max{lkt (mij) : k ∈ 1..n}. (3)

3) Decision Nodes: The decision node utilizes the thresh-
olding method as outlined in [14], which involves the trans-
formation of the log-odds employed in the fusion process
back into probabilities. Subsequently, a threshold, denoted by
θ, is applied, and image processing is employed to identify
connected components. This process generates geo-localized
fused observations that represent the output of a fusion graph
G.

B. Evaluation

In this section, the evaluation methodology is introduced,
including a description of the data and the metrics that are
used for the evaluation. The evaluation is limited to the ship
detection component of the scenarios, as not all individuals
were equipped with trackers, which would have resulted in
erroneous classification as false positives. Given that our use
case encompasses the identification and tracking of vessels,
we assess the F1-Score, the False Positive Rate (FPR), and
the distance between sensor/fusion detections and the ground
truth. The calculation of the F1-Score and the FPR for geo-
spatial data is described in [14]. For the distance metric we
compute the distance of the centroid of the detections. The
distance metric is computed by determining the centroid of
the detections. For each ground truth, the minimal distance is
assigned as its distance value. Then, the average is computed
across all ground truths.

C. Selection of Fusion Graphs

One of the main tasks in constructing fusion systems is
deciding how to combine different sensors to exploit their
complementary data. In [14] the authors argue that this can
be done by selecting different fusion graphs. Based on the
scenarios and platform movement described in II-B we decided
to investigate two fusion graphs G1 and G2. The graph G1

represents a fusion of sensor observations by mobile platforms
(i.e. UAV-EO and UAV-IR), while G2 additionally incorporates
costal ground sensors (i.e. SWIR and LWIR). The graphs
are presented in Fig. 3 and Fig. 4 respectively, using the
notation described in III-A2. These graphs were selected to
assess the performance of mobile sensors versus simple fusion
first, and then to compare their performance with the addition



Standard P. Optimized P.
UAV-EO (τ, p) (1, 0.5) (1.7424, 0.1654)
UAV-IR (τ, p) (1, 0.25) (0.1705, 0.0036)

θ 0.8 0.6847
Resolution (m) 5 5

TABLE II: Parameters for the simple Fusion graph

of coastal ground sensors. The first graph, or G1 , uses a
simple fusion approach that combines two similar sensors and
performs low-pass filtering through thresholding. This allows
us to compare the fusion system with the sensors alone to
establish a baseline for further evaluations. The Logical AND
fusion model combines the mobile sensors with the coastal-
based cameras in the graph G1, requiring a detection from
both sensor types to trigger an alarm. This combines the best
aspects of both sensor types: the drones’ precise localization
capabilities and the cameras’ reliability.

IV. RESULTS

In this section we show the results of the evaluated metrics
of the selected fusion graphs G1 and G2 applied on the
scenarios described in II-B. The evaluation is two-folded.
First, we assess the sensors on the mobile platforms as a
baseline. We only use the UAV data as a baseline. This
enables us to compare the fusion graphs to the system not
utilizing any fusion component. Next, we evaluate the graph G1

using standard (baseline) parameterization and an optimized
version. The optimal parameters were found by running a
Bayesian optimization as described in [25] with a target
function F1− Distance

100 , which was arbitrarily chosen based on
experience and the use case of tracking in mind. Finally, we
evaluate the full graph G2. In Tab. IV we see the final results of
the evaluation of the selected metrics for the different fusion
graphs by scenario and averaged. For the sake of completeness
and reproducibility in Tab. II we show the final parameters
of the fusion graph‘s nodes. Comparing the metrics of sensor
observations from UAVs only to the fusion system represented
by the graph G1 we see a reduction in the average over all
scenarios of the FPR by three percentage points while the
the F1-Score remained marginally unchanged, however, at the
cost of the localization accuracy by roughly 2m. The results
of the fusion system represented by G1 with optimized node
parameter seem to only improve the F1-score compared to the
baseline parametrization. Interestingly, by incorporating also
the coastal ground sensor data represented by the graph G2

we do see a major reduction in the FPR at the cost of a slight
reduction in the F1-score and distance. An optimization of the
camera parameters was out of scope of this paper, as each step
of the optimization requires a full run of our fusion system and,
since there were many more camera than UAV detections (as
seen in Tab. I), it was not feasible to run such an optimization.

V. DISCUSSION

Developing an experimental setup for scientific research in
these domains presents many challenges, both technical and
organizational. In this study, we also reflect on this perspective

Fig. 3: Composition of Fusion Graph G1

TABLE III: Results of the different Scenarios with different
fusion configurations

UAV Data G1 G1 Optimized G2

FPR 0.1247 0.0991 0.1174 0.0415
Scenario 1 0.0618 0.0342 0.0403 0.0124
Scenario 2 0.1638 0.1491 0.1774 0.0379
Scenario 3 0.1125 0.0962 0.1043 0.0119
Scenario 4 0.1639 0.1367 0.1283 0.0788
Scenario 5 0.1623 0.0965 0.1389 0.0879
Scenario 6 0.0841 0.0820 0.1151 0.0202

F1-Score 0.3814 0.3850 0.4062 0.3644
Scenario 1 0.6341 0.6273 0.6638 0.5481
Scenario 2 0.2650 0.2762 0.2784 0.2611
Scenario 3 0.2892 0.2953 0.3038 0.2434
Scenario 4 0.3921 0.4039 0.4319 0.3929
Scenario 5 0.3429 0.3457 0.3670 0.3579
Scenario 6 0.3650 0.3616 0.3924 0.3831

Distance (m) 6.3692 8.6460 8.7942 6.9874
Scenario 1 4.8917 7.0977 6.8001 6.7353
Scenario 2 7.8228 10.7120 10.2642 8.9884
Scenario 3 6.2837 8.2908 8.5270 6.6501
Scenario 4 6.3519 9.1729 9.2113 6.2012
Scenario 5 6.7334 8.5465 9.1140 6.3347
Scenario 6 6.1315 8.0559 8.8487 7.0149

TABLE IV: Parameters of fusion for graph G2

.

Parameter Value
UAV-EO (τ, p) (1, 0.5)
UAV-IR (τ, p) (1, 0.5)

SWIR (τ, p) (0.2, 0.3)
LWIR (τ, p) (0.2, 0.3)

θ 0.8
Resolution (m) 5



Fig. 4: Composition of Fusion Graph G2

because we believe it provides valuable insights into develop-
ing such an experiment. However, our focus remains on the
technical and scientific findings we gained by conducting and
evaluating our fusion models within this experiment.

A. The Operational Perspective

In section II, we described the experimental setup. Planning
is pivotal for conducting such an experiment successfully. The
focus was on generating representative data for multimodal
fusion systems in the context of maritime surveillance. The
use cases in this context are complex and require many
resources, such as small boats, vessels, actors, and, of course,
a location for the experiment. This comes with a financial
burden. Despite the existence of funded research projects,
generating a complete data set for scientific benchmarking of
fusion systems is nearly impossible due to the classification,
sensitivity, and multiple stakeholder involvement. The silver
lining is that it is still possible to report the findings, which
help the community share lessons learned. This is how we
hope to contribute with this manuscript.

Data Collection Table I summarizes the final data set.
However, this does not represent all of the collected data, but
rather the data after curation. In real-world experiments, you
are exposed to environmental influences (bad weather, wind)
and technical issues (malfunctioning experimental equipment,
power outages, etc.) that may compromise the experiment
temporarily. Ultimately, only 58:17 minutes of the recorded
data from a two-day experiment was suitable for evaluating
the fusion system of our experiment.

Synchronicity One of the key characteristics of this dataset
was its synchronous nature. In previous trials, we found that
synchronizing all the data sources was very difficult when the
sensors were connected via different networks and the com-
puters were set to different time zones. Another common issue
is the slight offset between UTC and GPS time, which many

people are unaware of and is difficult to detect in the data. It
is impossible to distinguish a slight time error from an error
in space with the naked eye. To ensure temporal alignment,
we used an NTP server to which all the sensor platforms
and sensors were connected. Furthermore, we synchronized
the GNSS trackers, meaning the sensor detections and ground
truth data are in the correct temporal order. This was necessary
for the temporal domain of our evaluation.

B. The Technical Perspective

Geo-Localization: Before discussing the results of the
evaluation, we would like to reiterate the importance of geolo-
cating sensor information. Since the application is geospatial,
modeling the location of sensor observations is crucial. This is
especially important because the spatial domain is part of the
evaluation metric, as seen in other experiments [12]–[14], [25].
From a domain perspective, covering large areas is important,
as is the distance to the nearest object of interest. However, as
shown in Tab. III, we observe that the scaling of the distance
metric is rather small (less than 10 m). For large areas, this
is quite accurate, considering an operator needs to locate a
ship’s position. However, the coastal-based cameras weren’t
positioned high enough to provide accurate distance estimates
for their detections.

Results in General: Even though the metrics don’t look
super impressive, the UAV detections themselves were already
very good. This is because, for our evaluation, even a small
divergence leads to a false positive classification. For example,
if a wind gust affects the UAV and it locates the ship 15
meters away from its actual location, this leads to an incorrect
detection. A visual inspection of the data revealed no false
positives; the camera only detected ships when they were
present. The coastal-based sensors performed similarly, except
they sometimes detected ships on the horizon that weren’t
part of our scenario. Our goal was to reduce the FPR while
maintaining the F1-score and distance. Due to the high quality
of the data, any fusion system can only slightly influence the
metrics, and a trade-off is always involved. Fusion of UAVs
compared to UAVs alone showed an improvement in FPR and
F1-score, confirming the benefits of a fusion system as argued
in [14]. The optimization of the graph parameter does not
seem impressive. Although the F1-score increased, the FPR
decreased compared to the baseline, due to the selected target
metric. The full graph is the best option for sequences defined
in scenarios. From an operational point of view, the small
differences in distance and recall are not that relevant. Since
the vessels were detected most of the time, operators still have
a good overview of the situation. The decrease in FPR is much
more significant because false alarms are usually costly and,
in our case, would lead to an overestimation of the number
of ships in the area. Using two different sensor modalities
to confirm the presence of a ship was beneficial. Thus, we
can confirm that using fusion systems to handle and exploit
sensor data is necessary for better performance and situational
awareness.



Limitations: There are still limitations that need to be
considered. First, fusion systems rely on the underlying data.
This means that in case none of the sensors are capable of
any detection this capability will not magically appear after the
fusion system. However, as we have seen in Tab. IV fusion sys-
tems are capable of exploiting the positive attributes of sensors
and thus contribute to the performance enhancing measured
by different metrics. Therefore, adding more data sources
(i.e., sensors) to the sensor network increases the potential
of fusion systems. Second, constructing and parameterizing
(i.e., configuring) a fusion system remains very complex. In
this study, the fusion graph was selected empirically based on
knowledge of the scenarios being planned. This is considered
domain know-how and is only available through experts in
the field. This knowledge cannot be assumed a priori and is
difficult to obtain in certain domains. This is why domain-
agnostic optimization techniques are necessary. In our future
work, we plan to investigate such methodologies by extending
the optimization process described in [25] to incorporate
the selection of appropriate nodes (i.e., sensor, fusion, and
decision).

Working with real-world data: Several real-world opera-
tional limitations affected the evaluation. For instance, ships
outside the defined experimental area were detected, contribut-
ing to the observed false positives. Full coverage could not be
achieved due to operational procedure constraints, resulting
in a lower absolute F1-score. These conditions underscore the
importance of a robust fusion system capable of handling false
positives, which are often triggered by technical artifacts and
environmental phenomena in real-world sensor deployments.

Ultimately, we decided against evaluating the coastal ground
sensor alone, as the cameras also picked up ships on the
horizon that weren’t part of the experiment. This means
that the results would not be representative. This decision is
important, as it demonstrates how the experimental setup is
influenced by changing environmental conditions in a real-
world scenario. As there were vastly more camera detections,
as seen in Tab. III, evaluating the full fusion graph G2 is very
costly. Because of these reasons we decided not to optimize the
whole fusion graph as we did with G1. Quite frankly, we also
did not anticipate significant benefits from the optimization
results of G1.

C. Key Takeaways & Future Work

Clearly, state-of-the-art methodologies perform reliably on
synthetic datasets. However, this experiment demonstrates that
real-world environments are complex, characterized by noisy,
incomplete, and often unsynchronized sensor data. Unexpected
detections, such as vessels not part of the experiment, revealed
limitations in spatial coverage and presented challenges in in-
terpreting, curating, and synchronizing the data. Furthermore,
constraints specific to sensors, such as directional outputs from
optical cameras or degraded GNSS signals affecting UAV-
based geolocation, highlight technical limitations in obser-
vation modeling. This experiment definitively demonstrates
the challenges of working with controlled real-world sensor

data. Multi-modal sensor fusion is the clear solution to these
challenges. By leveraging the strengths of different sensors, it
improves detection metrics. However, achieving consistently
high performance remains difficult due to imprecise and
incomplete data. Performance is also heavily influenced by
metric selection, which varies with application needs.

Applying a fusion graph to the maritime domain has shown
promise in improving localization robustness, indicating that
fused data could support more sophisticated techniques. The
goal of using this dataset is to make multi-target tracking easier
to implement in future research. It is also hoped that valuable
real-world insights will be obtained when these methodologies
are applied. However, identifying an optimal fusion graph
is a challenging task that usually requires domain expertise.
Subsequent efforts will focus on developing techniques to
automatically select or adapt graph structures based on perfor-
mance metrics or by encoding domain knowledge directly into
the fusion process. Furthermore, the experiment corroborates
the importance of multimodality. The sensor suite is planned to
expand to include AIS, SAR, and high-altitude sources, such as
satellite images. This expansion will mitigate individual sensor
deficiencies and enhance the system’s overall resilience.

VI. CONCLUSION

This study offered valuable insights from a real-world
experiment in maritime surveillance. The study emphasized
the challenges and advantages of transitioning fusion appli-
cations from simulated environments to controlled real-world
scenarios. Planning such an endeavor is complex. This is espe-
cially true when considering a multi-technology provider and
multi-authority experiment. One of the most time-consuming
tasks is securing resources, such as the availability of ships,
vessels, and actors. Our primary contribution is demonstrating
how applying a hierarchical fusion graph-based approach to
a sensor network composed of coastal ground sensors and
UAV-mounted sensors can enhance system performance and
situational awareness. The two main ship movement scenarios
evaluated in this study demonstrate the critical role of fusion
systems in effectively integrating heterogeneous sensor data.
Our findings emphasize that applying fusion methodologies
to real-world maritime data presents significant challenges.
These challenges are technical, operational, and related to
deployment and coordination. These insights provide a valu-
able foundation for advancing practical, fusion-based maritime
surveillance systems.
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